Let me first define what I mean with pseudo-ASLR. Address Space Layout Randomization (introduced in Windows Vista) loads executable files at different memory addresses. Studies have shown that ASLR uses 256 different base addresses and that the distribution is pretty uniform.
Pseudo-ASLR is what EMET and my tool SE_ASLR enforce. When a DLL does not support ASLR, memory at the base address of this DLL is allocated right before the DLL is loaded into the process. Since the address is not free, the image loader will load the DLL at a different address, thereby « randomizing » the base address. But how good is this randomization?
As I pointed out in my article on EMET, this base address is different each time a new process is started (unlike ASLR which needs a reboot for the base address to change). So maybe this is better ?
I developed a test program that loads a DLL but pre-allocates memory at the address of the DLL before loading. Then I ran that program thousands of times on a Windows 7 32-bit machine.
Running this program about 50.000 times gives me 68 different addresses. That’s by far not as good as 256 with ASLR. But what’s more important, is that the distribution of these addresses is not uniform at all:

There’s one address (0x000E0000 in my test) that is used 30% of the time. 2 other addresses are used 10% of the time. Rebooting the machine does not change this distribution.
When I do the same test, but enforce ASLR with EMET, I get a similar result:

Again there’s an address that is selected 30% of the time, but it’s different from my previous test. Rebooting the Windows 7 machine doesn’t change the address.
In this test, EMET uses only 15 different addresses, compared to the 68 addresses in the first test. I’ll have to research this difference, I’ve no explanation for it.
Conclusion from this simple test: pseudo-ASLR is rather weak, because I can predict the base address and I will be right one time out of three, which is not bad at all when I can launch my attack several times.